66 research outputs found

    A partial order semantics approach to the clock explosion problem of timed automata

    Get PDF
    AbstractWe present a new approach to the symbolic model checking of timed automata based on a partial order semantics. It relies on event zones that use vectors of event occurrences instead of clock zones that use vectors of clock values grouped in polyhedral clock constraints. We provide a description of the different congruences that arise when we consider an independence relation in a timed framework. We introduce a new abstraction, called catchup equivalence which is defined on event zones and which can be seen as an implementation of one of the (more abstract) previous congruences. This formal language approach helps clarifying what the issues are and which properties abstractions should have. The catchup equivalence yields an algorithm to check emptiness which has the same complexity bound in the worst case as the algorithm to test emptiness in the classical semantics of timed automata. Our approach works for the class of timed automata proposed by Alur–Dill, except for state invariants (an extension including state invariants is discussed informally). First experiments show that the approach is promising and may yield very significant improvements

    Hybrid organic-inorganic nanoparticles: controlled incorporation of gold nanoparticles into virus-like particles and application in surface-enhanced Raman spectroscopy.

    Get PDF
    A capsid is the protein coat surrounding a virus' genome that ensures its protection and transport. The capsid of murine polyomavirus (muPy) consists of one major (VP1) and two minor (VP2/3) proteins, from which just VP1 is sufficient to form the capsid when expressed recombinantly (1). From a material engineering point of view, viral capsids are of interest because they present a paradigm for complex self-assembly on the nanometer scale. Understanding and controlling these assembly dynamics will allow the construction of nanoscale structures using a self-assembly process. The first step in this direction was the discovery that capsids of several viruses can be reversibly disassembled into their building blocks and reassembled using the same building blocks by simply changing the buffer conditions (2, 3). Such capsids already find applications as targeted in vivo delivery vectors for genes, proteins or small molecular drugs (4, 5), as optical probes for biomedical imaging and sensing purposes with unprecedented resolution and sensitivity and can potentially be used as templates for nanoelectronics (6, 7)

    Optimal infinite scheduling for multi-priced timed automata

    Get PDF
    This paper is concerned with the derivation of infinite schedules for timed automata that are in some sense optimal. To cover a wide class of optimality criteria we start out by introducing an extension of the (priced) timed automata model that includes both costs and rewards as separate modelling features. A precise definition is then given of what constitutes optimal infinite behaviours for this class of models. We subsequently show that the derivation of optimal non-terminating schedules for such double-priced timed automata is computable. This is done by a reduction of the problem to the determination of optimal mean-cycles in finite graphs with weighted edges. This reduction is obtained by introducing the so-called corner-point abstraction, a powerful abstraction technique of which we show that it preserves optimal schedules

    Low Velocity Impact on Pre-Loaded Composite Structures

    Get PDF
    Low velocity impact is a serious hazard for laminated composite structures. It can result in considerable loss of mechanical performance and must be taken into account during the design process. Extensive knowledge of the composite damage processes and advanced numerical simulation tools can help find optimal designs and reducing development costs. In addition to normal service loads such as bending moments, shear forces, torques, pressure loads, etc. airframe structures also have to withstand impact loads resulting from hailstones, runway debris or tool drops during maintenance work. These impacts are likely to happen while the airframe is stressed under normal service loads. The superposition of service loads and impact loads is likely to alter the impact response of a structure compared to an unloaded structure. In this work, the influence of in-plane compressive loads on the low velocity impact response of carbon fibre epoxy composites is studied. Low velocity impact experiments on T800s/M21 UD carbon fibre epoxy laminates, under various compressive pre-strains, have been carried out with impact energies of up to 45J. The compressive pre-load applied to the structure was observed to significantly increase the impact damage and reduce the post-impact strength. To predict the damage resulting from impacts with and without pre-loads, a 2D damage model has been developed and implemented into the commercial finite element code ABAQUS/Explicit. The model is based on a combination of continuous damage mechanics and fracture mechanics with interactions between damage modes considered for both, damage initiation and damage propagation. Thereby damage degradation is following non-linear propagation laws. The model's material degradation is governed by the material's fracture toughnesses which are important material input parameters for the damage model. A detailed series of laboratory tests have been conducted to develop test set-ups for the measurement of translaminar fracture toughness values, which are used as input units for the damage model.Open Acces

    Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche?

    Get PDF
    Background: The octamer-binding transcription factor 4 (Oct4) was originally described as a marker of embryonic stem cells. Recently, the role of Oct4 as a key regulator in pluripotency was shown by its ability to reprogram somatic cells in vitro, either alone or in concert with other factors. While artificial induction of pluripotency using transcription factors is possible in mammalian cell culture, it remains unknown whether a potential natural transfer mechanism might be of functional relevance in vivo. The stem cell based regeneration of deer antlers is a unique model for rapid and complete tissue regeneration in mammals and therefore most suitable to study such mechanisms. Here, the transfer of pluripotency factors from resident stem cell niche cells to differentiated cells could recruit more stem cells and start rapid tissue regeneration. Methodology/Principal Findings: We report on the ability of STRO-1 + deer antlerogenic mesenchymal stem cells (DaMSCs) to transport Oct4 via direct cell-to-cell connections. Upon cultivation in stem cell expansion medium, we observed nuclear Oct4 expression in nearly all cells. A number of these cells exhibit Oct4 expression not only in the nucleus, but also with perinuclear localisation and within far-ranging intercellular connections. Furthermore, many cells showed intercellular connections containing both F-actin and a-tubulin and through which transport could be observed. To proof that intercellular Oct4-transfer has functional consequences in recipient cells we used a co-culture approach with STRO-1 + DaMSCs and a murine embryonic fibroblast indicator cell line (Oct4-GFP MEF). In this cell line a reporter gene (GFP) unde

    Adding Symmetry Reduction to Uppaal

    Get PDF
    Contains fulltext : 60202.pdf (preprint version ) (Open Access)14 p
    corecore